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Efficient retrieval of the thermo-acoustic flame transfer function
from a linearized CFD simulation of a turbulent flame
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SUMMARY

The stability of thermo-acoustic pressure oscillations in a lean premixed methane-fired generic gas turbine
combustor is investigated. A key element in predicting the acoustically unstable operating conditions of
the combustor is the flame transfer function. This function represents the dynamic relationship between
a fluctuation in the combustor inlet conditions and the flame’s acoustic response. A transient numerical
experiment involving spectral analysis in computational fluid dynamics (CFD) is usually conducted to
predict the flame transfer function. An important drawback of this spectral method application to numerical
simulations is the required computational effort. A much faster and more accurate method to calculate
the transfer function is derived in this paper by using a most important basic assumption: the fluctuations
must be small enough for the system to behave linear. This alternative method, which is called the linear
coefficient method, uses a linear representation of the unsteady equations describing the CFD problem.
This linearization is applied around a steady-state solution of the problem, where it can consequently
describe the dynamics of the system. Finally, the flame transfer function can be calculated from this
linear representation. The advantage of this approach is that one only needs a steady-state solution and
linearization of the unsteady equations for calculating a dynamic transfer function, i.e. no time-consuming
transient simulations are necessary anymore. Nevertheless, as a consequence of the large number of degrees
of freedom in a CFD problem, an extra order reduction step needs to be performed prior to calculating
the transfer function from the linear representation. Still, the linear coefficient method shows a significant
gain in both speed and accuracy when calculating the transfer function from the linear representation as
compared to a spectral analysis-based calculation. Hence, this method gives a major improvement to the
application of the flame transfer function as a thermo-acoustic design tool. Copyright q 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The dynamic relationship between a small fluctuation in the inlet conditions of a combustor and
the resulting heat release rate perturbation of the flame is called the flame transfer function. This
transfer function can be obtained frommeasurements [1–3], analytical models [4] and from transient
computational fluid dynamics (CFD) simulations [5]. In CFD simulations, the inlet quantities
of the combustor are perturbed by an excitation signal (white noise, sine, step function, etc.).
Simultaneously, the response of the flame in terms of the volume-integrated heat release rate Q
is monitored. The acoustic compactness of a flame allows this ‘lumped’ approach, in which the
acoustic monopole sound source produced by the flame is volume integrated into a single point
source.

With the transient data of the excitation and the response of the flame, a flame transfer function
in the frequency domain can be constructed using Fourier transformation. Many spectral problems
are involved in this procedure such as leakage, aliazing, lack of accuracy and frequency resolution,
etc. Moreover, one always makes a truncation error in the time discretization scheme. Another
big disadvantage of this method is the computational effort required to obtain an accurate flame
transfer function with a reasonable frequency resolution.

In the numerical experiment, the amplitude of the excitation is usually small to have a linear
response of the system (this is one of the basic requirements of the use of a transfer function and
of spectral analysis). However, this linear response can be obtained directly by linearization of the
unsteady equations that describe the CFD problem around a steady-state solution. Subsequently, the
flame transfer function can be calculated from this linear representation. This linear representation
is cast into a more general form: the state-space system. State-space systems are typically used in
control engineering to describe dynamical systems.

Typically, the order of a linear representation of a CFD problem is larger than O(106). This large
order requires an order reduction step to be applied prior to using the representation for calculating
the transfer function. The combination of the state-space method and the order reduction method
is called the linear coefficient method. With this method, the transfer function can be calculated
faster and more accurately than with the conventional transient methods.

By its definition, the linear coefficient method yields linear transfer functions. This also applies
to transfer functions constructed from an experimentally or numerically obtained time series and
transferred to the frequency domain by spectral analysis. Due to this limitation the linear coeffi-
cient method is valid for small fluctuations and useful for linear controller design for combustion
instabilities. Nonlinear saturation effects occurring in the limit cycle of combustion instabilities
cannot be predicted by the method in its current form. An overview of linear ranges and nonlinear
saturation effects for turbulent premixed combustion can be found in [6].

The intention of the current paper is to compare the linear coefficient method with a conventional
CFD method, not to validate the conventional CFD method with experiments. Hence, in this paper
a comparison is made between results based on the linear coefficient method combined with steady
RaNS, and the unsteady RaNS (URaNS) approach. Flame transfer function modelling on basis of
the URaNS approach has been compared to experimental results in literature by several authors
(see, for example, [5, 7]). The application of the URaNS approach is justified when the turbulent
fluctuations occur at a much smaller time scale than the periodic fluctuations, i.e. the characteristic
frequency at which the turbulent fluctuations occur (∼ �/k when the k–� turbulence model is
used) is much higher than the frequency of the periodic fluctuation. When this requirement is met,
the turbulence structure is unaffected by the unsteadiness. For the calculation of a flame transfer
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THERMO-ACOUSTIC FLAME TRANSFER FUNCTION OF A TURBULENT FLAME 1133

function of a turbulent flame, meeting this requirement is usually not a problem. As a result of
the large Reynolds numbers, the time scale of the turbulent fluctuations is very small. In addition
to that, the time scale of the periodic features is relatively large, since the maximum frequency of
interest for the flame transfer function is in general relatively low (<500 Hz).

Since RaNS codes are designed to solve the total quantities, small perturbations are subjected
to a relatively high numerical damping. With the adaptation of the equations which it acts upon,
the linear coefficient method can also be applied to a laminar CFD code to calculate the dynamic
behaviour of laminar flames. With some more effort, one could also apply it to large Eddy simulation
(LES), in which the coupling between the periodic features and the turbulence is present and the
numerical dissipation is much less than in RaNS simulations. The basic requirement of the method
is that a steady state can be defined. In LES, this steady state could be an averaged solution. Using
the coefficients at this averaged solution, a state-space representation can be constructed again. All
spatial couplings are also included in the linear coefficient method. Therefore, it is also able to
predict spatial flow structures, such as vortices.

In the next section, the state-space representation of the unsteady CFD equations is discussed.
Moreover, as an example of the ability of the state-space representation to describe dynamical sys-
tems, the approach is applied to a simple mass–spring–damper system. Subsequently, the implicitly
restarted Lanczos method is discussed. This method is used as an order reduction method. Finally,
the combination of both methods will be applied to a simple RaNS CFD simulation involving
combustion. This yields the flame transfer function of the numerical flame in this simulation. The
speed and accuracy of the linear coefficient method are compared to the conventional spectral
analysis method. This will clearly show the benefits of the linear coefficient method.

2. STATE-SPACE REPRESENTATION

The unsteady equations that are solved in a CFD simulation can be written as

��i

�t
= f (�1,�2, . . . , �n), i = 1, 2, . . . , n (1)

in which �i are the variables in the problem, n equals the number of variables and t indicates
time. The index i is a unique number, indicating an independent variable at a node. Since each
independent variable is present at each node, the variable number i is defined as

i = nvar(inode − 1) + ivar (2)

in which ivar indicates the independent variable number (ranging from 1 to nvar, the number of
independent variables at a node), and inode is the node number (ranging from 1 to nnode, the number
of nodes).

Solving Equation (1) for f = 0 yields the steady-state values of the independent variables.
Subsequently, small perturbations �′

i around these steady-state values �̄i are considered (e.g.
�i = �̄i + �′

i ). Linearization of the resulting equations yields the following equations:

d�′
i

dt
=

n∑
j=1

ai j�
′
j , i = 1, 2, . . . , n (3)
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in which ai j are the coefficients representing the linear relationship between a fluctuation in � j
and the rate of increase in time of �i . Inserting the coefficients in a system matrix A, Equation (3)
can be written as

dW′

dt
=AW′ (4)

The coefficient matrix A contains the linear coefficients ai j evaluated at the steady state �̄i . The
vector W′ is the vector with the independent variables {�′

1, �
′
2, . . . , �

′
n}T. The coefficient matrix

includes the coupling between the nodes. This coupling comes from the discretized spatial
derivatives in the equations (multiple nodes contribute to the gradient at a specific point).

For CFD problems the matrix A will be very sparse. For a single-step combustion simulation
with a finite rate combustion model, typically 11 equations per node are solved (nvar = 11). These
equations are solved at nnode nodes. Assuming that each node is coupled to maximum c= 20 other
nodes, the sparsity (non-zero elements divided by total number of elements) of the matrix A (with
dimensions nvarnnode × nvarnnode) equals

S = (c + 1)nvar(nvarnnode)

n2varn
2
node

= (c + 1)

nnode
(5)

For c= 20 and nnode = 25 000, the sparsity is only 0.084%. Note that the sparsity decreases for
increasing number of nodes, since obviously the average bandwidth of the matrix, determined
by c, is approximately constant in case of a regular mesh. Consequently, relatively less non-zero
coefficients are encountered for larger problems.

When inlet quantities of the system are perturbed, these quantities should be included in the
unsteady equations. It is assumed that only one input variable is fluctuated. The unsteady part due
to a fluctuating inlet variable �′ is linearized and added to Equation (4):

dW′

dt
=AW′ + B�′ (6)

in which B is a vector describing the linear influence of �′.
For flame transfer function calculations, the single output of the system will be the volume-

integrated unsteady heat release rate. This unsteady heat release rate Q′ is a function of the unsteady
variables W′ and of the fluctuating inlet variable �′. This function can be linearized, resulting in
the following expression:

Q′ =CW′ + D�′ (7)

in which C is a vector and D is a scalar, both containing coefficients describing the linear influence
on the equation for the unsteady heat release rate.

The matrix A, vectors B and C and the scalar D in Equations (6) and (7) describe the linear
system in a state-space formulation. The sizes of these matrices are shown schematically in Figure 1.
In this figure, the matrices for a single input, single output (SISO) system are shown, such that
m = 1 and p= 1, respectively. The state-space systems considered in this paper are of this type.
Moreover, the size of the system is denoted as n.

Assuming a harmonic time-dependence exp(i�t) of the fluctuating quantities of Equations (6)
and (7), the transfer function H between the input �′ and the output Q′ at a specific angular
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Figure 1. Schematic overview of the state-space matrices for a SISO system.

Figure 2. Mass–spring–damper system used in the example of the state-space approach.

frequency � can be calculated as

H(�) = Q′

�′ =C(i�I − A)−1B + D (8)

in which I is the identity matrix and i is the imaginary unit. So when the state-space matricesA, B,C
and D are obtained by linearization around a certain steady-state solution of the unsteady equations
of the system, the transfer function at any frequency � can be determined with Equation (8). Using
this method, there are no truncation errors in time, in contrast to the transfer function obtained
from a transient calculation.

Example
To show the ability of the state-space representation to describe dynamical systems, it will be
applied to the simple mass–spring–damper system shown in Figure 2.

The equations describing the dynamics of this system can be written as

�x1
�t

= x2 (9)

�x2
�t

=− k

m
x1 − c

m
x2 + 1

m
F (10)
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where m, k and c are the mass, the spring constant and the friction constant, respectively. For this
simple system, the steady-state solution does not influence the dynamic behaviour of the system.
Therefore, the linearized system is similar to the system of Equations (9) and (10), with the variables
x1, x2 and F replaced by their perturbed versions: x ′

1, x
′
2 and F ′.

With Equations (9) and (10) the state-space system with output y′ = x ′
1 can be constructed as

⎡
⎢⎢⎢⎣

�x ′
1

�t

�x ′
2

�t

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

0 1

− k

m
− c

m

⎤
⎥⎦

[
x ′
1

x ′
2

]
+

[
0

1/m

]
F ′ (11)

y′ = [1 0][x ′
1 x ′

2]T + 0 · F ′ (12)

Having constructed the state-space system, thematricesA,B,C and D are known and can be inserted
in Equation (8) to calculate the transfer function He = y′/F ′ at a specific frequency �. Figure 3
shows the expected amplitude and phase of this transfer function. The frequency is normalized by
the eigenfrequency of the undamped system, f0 = (1/2�)

√
k/m. The transfer function is plotted at

three different values for the relative damping coefficient �= c/4�m f0.
It can be seen that representing the dynamical system with a state-space formulation provides

a structured approach to calculate a specific transfer function. The same approach will now be
applied to a much higher-order system, i.e. a CFD problem.

When applied to CFD problems, the order of the linear model is equal to the product of the
number of nodes in the mesh and the number of independent variables that are solved at each node
(= nvarnnode). For medium-sized systems (up to O(103)), the transfer function can be explicitly
calculated from the state-space matrices using Equation (8).

One of the operations included in Equation (8) is an inverse operator, acting on the coefficient
matrix A. When the order of A is large, this inverse cannot be evaluated directly anymore due to

Figure 3. Transfer functions of mass–spring–damper system for different values of the relative damping
coefficient. —, � = 0.1; , � = 0.2; , � = 0.3.
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memory and CPU time limitations. To calculate a transfer function for large systems, the state-space
system itself is reduced in order by a reduction technique, which approximates the original system
by a reduced order system. The technique removes insignificant information from the matrices. In
the next section, it is shown how the state-space model can be reduced using the implicitly restarted
and shifted Lanczos method.

3. REDUCTION METHODS

With reduction techniques the full state-space system (Equations (6) and (7)) is approximated by
a dimensionally smaller state-space system of the form

dŴ
′

dt
= ÂŴ

′ + B̂�′ (13)

Q′ = ĈŴ
′ + D�′ (14)

in which the matrices with the hats are low-dimensional projections of their full counterparts. For
an overview of reduction methods for large-scale dynamic systems, see [8, 9].

To obtain the reduced order system from the original system, W′ is approximated by QkŴ
′
,

where Qk is an orthonormal‡ projector matrix of size n × k, in which k is the order of the reduced
model. Substituting this expression for W′ into the original state-space system, premultiplying the
first equation with QT

k , the following system is obtained:

dŴ
′

dt
=QT

kAQkŴ
′ + QT

kB�′ (15)

Q′ =CQkŴ
′ + D�′ (16)

Hence, Â=QT
kAQk, B̂=QT

kB and Ĉ=CQk.
The problem is now reduced to finding the orthonormal projector Qk. This is done with the

Lanczos method [10], which, in its origin, is an inexpensive, iterative method to obtain a few
largest and/or smallest eigenvalues of a matrix.

The general unsymmetrical version of the Lanczos method is explained in Appendix A (see also
Golub and van Loan [11]). In the next section, it is shown how the method can serve as a state-space
model reduction tool. After this, two methods are presented which can be used to overcome the
following consequences of a poor starting vector:

(1) Due to a poorly chosen starting vector of the Lanczos iteration a stable full system can
be transformed into an unstable reduced system. One can implicitly modify the matrix Qk
and pass immediately to a stable version of the reduced model. This procedure is called the
implicitly restarted Lanczos method (see Grimme et al. [10]).

(2) By ‘shifting’ the coefficient matrix a so-called breakdown of the procedure can be prevented.
Moreover, a better approximation around a chosen frequency is obtained.

‡A matrix A is orthonormal iff ATA= I. This implies that AT =A−1.
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3.1. Lanczos and model reduction

The idea is to use the Lanczos method to match the moments of the transfer function of the linear
unreduced system with the reduced system. With the Lanczos method the matching of the moments
will be done without explicitly calculating these moments. The advantage of this will become clear
later in this section.

The moments of the transfer function are the coefficients of a power series expansion of H(s). To
obtain an expansion around �=∞, the initial value theorem known from the Laplace transformation
is used

lim
s→∞ sG(s)= lim

t→0
g(t) (17)

where G(s) is the Laplace transform of g(t). The expansion around � =∞ can thus be obtained
by letting the time t go to zero in the inverse Laplace transform of G(s) = H(s)/s. This inverse
Laplace transform can be calculated as

g(t) =L−1
{
H(s)

s

}
=

∫ t

t=0
CeAtB dt (18)

Expanding this expression around t = 0 yields

g(t) =
∞∑
j=1

CA j−1B
t j

j ! (19)

Using now the Laplace identity L{tn} = n!/sn+1 the power series expansion for H(s) around
� =∞ can be obtained by Laplace transforming expression 19, yielding

H(s) = sG(s)=
∞∑
j=1

CA j−1Bs− j (20)

which results in the following expression for the moments (known as Markov parameters):

� j (�= ∞) ≡CA j−1B (21)

By matching as many moments as possible, the reduced system gives an approximation of the full
system.

With the general Lanczos method the expansion around � =∞ will be matched. This means
that the moments of Equation (21) are matched. In principle, one can also simply calculate the
moments and obtain a lower-order expression for the transfer function. This would not be very
computationally or memory expensive, since it only requires repeated matrix vector multipli-
cations. However, the computation of these moments has shown to be numerically problem-
atic [12], since the powers of the eigenvalues of A grow exponentially fast. This is the reason
why the Lanczos method is used: it matches the moments of the transfer function expansion, with-
out explicitly calculating the moments, but by projecting the state-space matrices on a reduced
space.

The reduced state-space system that is obtained by projecting the original system with the
orthonormal projector matrices Pk (=Q−T

k , see Appendix A) andQk has the same first 2k moments
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as the original state-space system. This can be shown by noting that for any polynomial function
P there holds

P(A)Qk =QkP(Â) →P(A) =QkP(Â)QT
k (22)

P(AT)Pk =PkP(ÂT) →P(A) =PkP(Â)PT
k (23)

when deg(P)<k. These properties follow from the Lanczos iteration (see Appendix A). To match
the first 2k moments, the following condition between the reduced and unreduced model must be
satisfied:

ĈÂl+ j B̂=CAl+ jB (24)

for 0�l�k − 1 and 0� j�k. By using the properties shown in Equations (22) and (23) it can be
shown that condition (24) is satisfied

CAl+ jB=CAlA jB (25)

= (CQkÂlQT
k)(PkÂ jPT

kB) (26)

=CQkÂlÂ jQ−1
k B (27)

= ĈÂl+ j B̂ (28)

Thus the Lanczos method, by producing the biorthonormal matrices Pk and Qk, matches the first
2k moments of H(s).

3.2. Implicitly restarted Lanczos

The Lanczos procedure requires starting vectors to start the iteration. The following starting vectors
appear to give good results for model reduction problems [10]:

q1 =B/
√|CB| (29)

p1 = sign(CB)CT/
√|CB| (30)

However, these start vectors in combination with the reduction procedure might transform a stable,
full system (i.e. the real part of all eigenvalues smaller than zero) into an unstable reduced system.
To overcome the consequences of a poor starting vector to construct the reduced model, one could
explicitly remove the unstable eigenvalue 	u from the reduced model by choosing new starting
vectors, i.e. q̃1 = (A − 	uI)q1 and p̃1 = (A − 	uI)p1, and repeat the whole Lanczos process for
k additional steps [10]. However, one could also implicitly modify the matrices Qk and Pk and
pass immediately to a stable version of the reduced model Â=PT

kAQk. This implicit procedure is
described in Grimme et al. [10] and is used here to speed up the reduction process.

3.3. Shifted Lanczos

A disadvantage of the Lanczos method is that breakdowns of the method (i.e. a division by zero)
can occur under some circumstances. Looking at the Algorithm 1 in Appendix A we can see that
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this will occur when 
 j or � j are zero. For the problem we are looking at here—obtaining a flame
transfer function, in which a convective component is included between the location where the
excitation occurs and the response location—
1 and �1 are already zero, or at least very small, at
the beginning of the algorithm. The value 
1 is defined as the product of the matrices B and C. The
matrix B contains only values at the excitation location, while the matrix C contains only values
at the response location. So when these matrices are multiplied, the result is zero and the Lanczos
method breaks down.

Another disadvantage of the method is that there may be a large steady-state error, as the Lanczos
method approximates the expansion of the transfer function around a frequency which is equal to
infinity. With the shifted Lanczos method, this problem can be overcome. Moreover, it also solves
the breakdown problem.

To obtain a good approximation around a certain frequency �, the transfer function H(s) =C(sI−
A)−1B (D = 0) is expanded in a Taylor series around s = � = 2� f

H(s) =
∞∑
j=0

� j (�)(s − �) j (31)

where � j (s = �) are the moments of the power series

� j (s = �) ≡C(A − �I)− j (�I − A)−1B (32)

When comparing the moments � j (s = �) (Equation (32)) with the moments that are matched with
the standard Lanczos method (Equation (21)) it can be seen that a realization around any frequency
� can be obtained by replacing the matrix A in the standard Lanczos method with the shifted
matrix (A − �I)−1 and the vector B with (�I − A)−1B. This is the basis of the shifted Lanczos
method [12].

Because the inverse of the square matrix (�I−A) is a full matrix, the multiplication (�I−A)−1B
results in a full vector, and therefore the product CB cannot be zero anymore. This prevents
breakdown of the method.

Real and imaginary shift frequencies can be used. Even multiple shift frequencies are
possible [12], but require a large amount of extra CPU time and memory. This extra CPU time
comes from the fact that in the shifted Lanczos method, the Amatrix is now replaced by (A−�I)−1,
which now requires solving systems of linear equations instead of simple matrix–vector multipli-
cations. Obviously, due to memory limitations this inverse matrix cannot be calculated explicitly
when the dimension of A is large. The inverse operation is therefore applied by solving trian-
gular systems obtained from an initial lower-upper (LU) decomposition (the linear system can
also be solved iteratively). The number of triangular systems that need to be solved is equal
to two times the order of the reduced model (see Algorithm 1 in Appendix A). The number
of required LU factorizations is equal to the number of shift points used. Since the LU fac-
torization is the most expensive operation in terms of CPU time and memory, using multiple
shift points is less attractive when working with large-scale systems. Therefore, a single shift
point will be used here. Because the approximated transfer functions are in fact low-pass filters
(i.e. a lot of information in the low-frequency region), a shift frequency of 1 Hz is used in this
paper.
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4. VALIDATION LINEAR COEFFICIENT METHOD

The performance of the linear coefficient method is demonstrated by calculating the flame transfer
function of a simple combustion system (for more examples of the application of the state-space
system to discretized systems, see [5]). To do so, a linear representation of the CFD equations
at all mesh nodes has to be extracted. Use is made of a commercial CFD code, that renders the
steady-state solution of the RaNS equations and the combustion scalar equations. Unfortunately
for our method, for reason of computational stability the CFD equations are not solved as a whole
in the CFD code. The transport equations are distributed over multiple groups and group-wise
solved in several iteratively coupled loops. Due to this it is not possible to directly output the
coefficients. Therefore, the discretization and the equations which are used in the CFD code were
implemented in MATLAB. To calculate the coefficients it is not necessary to use multiple loops
over the equations for computational stability. By importing the mesh and the variable values from
a steady-state converged solution, the coefficients of the state-space matrices can be calculated
by monitoring how the time derivatives change when the steady-state values of the independent
variables are slightly changed. For example, the coefficient ai j of the A matrix can be obtained
by changing variable j with a value �� j and calculating the response of the time derivative of
variable i , according to

ai j = d�′
i

dt

/
�� j (33)

To test the method, a circular combustion chamber is considered (Figure 4). The geometry is based
on a test rig that was built in the framework of the EU project DESIRE at the University of Twente.
A radial swirl burner provides a swirling flow, which stabilizes the flame.

In the example problem, only the grey part of Figure 4 is modelled. The boundary conditions at
the inlet of this reduced model come from a simulation with the full geometry. The model is further
reduced by only considering a 10◦ cut of the circular geometry and imposing periodic boundary
conditions at both radial planes to account for the remainder of the circular combustor.

The model is meshed with an unstructured mesh of 70 907 elements (21 289 nodes). Most of
these elements are concentrated in the flame zone. The mesh is dense enough to finally yield a flame
transfer function that is mesh independent. In this simulation 11 transport equations are solved:
3 momentum equations, 1 mass balance equation, 2 turbulence equations for k and �, 1 energy

Figure 4. Reduced model for example calculation (dimensions in mm).
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Table I. Operating point for the test-case.

Thermal Equivalence Preheating Adiabatic flame Absolute
power (kW) ratio (dimensionless) temperature (K) temperature (K) pressure (bar)

150 0.56 373 1661 1.5

equation and 4 convection–diffusion equations for the transport of the species mass fractions (CH4,
O2, CO2 and H2O).

The CFD problem described above was solved using the coupled, unstructured solver of CFX
5.6. The inlet conditions used in this test case are listed in Table I.

It is assumed that the fuel is perfectly mixed with air at the inlet of the model. This allows to
solely fluctuate the equivalence ratio, which is for most combustion systems the principal cause for
inducing heat release rate perturbations [13, 14]. The flame transfer function between the change
of the volume-integrated heat release rate with a change in the equivalence ratio � is determined
in several transient simulations, using impulse excitation in the equivalence ratio. White noise
excitation would give more accurate results than impulse excitation, but requires (far) more com-
putational effort [5]. The transient CFD simulations serve as a validation for the results obtained
with the linear coefficient method. The simulations are done with two different time steps: 0.5 and
0.25ms. These time step sizes are both small enough to result in fully converged solutions at each
new time level.

To include the excitation in the state-space matrices of the linear coefficient method, it should
first be expressed in terms of the independent variables. For this purpose, the equivalence ratio
perturbation can be expressed as a linear combination of the mass fractions yCH4 and yO2 at the
inlet. Since the coefficients of these two independent variables are already calculated in the A
matrix, the coefficients of the B matrix can be constructed from it.

The response of the dynamic model, i.e. the volume-integrated heat release rate, is represented
in the state-space model by the C and D matrices (see Equation (7)). The coefficients of the C
matrix give the relationship between a fluctuation in the volume-integrated heat release rate and
the independent variables, i.e.

c j = Qnew − Qs

�� j
(34)

The integrated heat release rate Q is a global variable, so the C matrix is one dimensional. The
superscripts s and new indicate the steady, unperturbed situation, and the perturbed situation,
respectively. In practice, the matrix is calculated by looping over all independent variables,
perturbing the variable, and monitoring the change in the volume-integrated heat release rate as a
result of the perturbation. After calculating the C matrix, the D matrix can be calculated from it
in the same way as the B matrix can be calculated from the A matrix.

For the flow field, it is required to put the outlet at a location where the gradients in the flow
are small. However, in the linear coefficient method one is only interested in the heat release
rate response. Since acoustic pressure and velocity fluctuations have very little influence on the
heat release rate [15], only convective effects in the flow field can influence the heat release
rate. Therefore, it makes sense to omit all coefficients corresponding to axial locations beyond
the closing position of the inner recirculation zone. This way, the number of nodes in the linear
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coefficient method could be reduced from 21289 to 3923. With 11 independent variables per node,
the order of the linear coefficient model becomes 43153. Using the Lanczos method, the state-space
model was further reduced to order 25, prior to calculating the transfer function, i.e. a reduction of
over 99.9%.

First, only fluctuations in the 4 convection–diffusion equations for the mass fractions are consid-
ered. The influence of the other equations and independent variables is removed by keeping them
at a constant value in the transient simulation. The transfer functions determined with impulse
excitation in a transient simulation and with the linear coefficient method are compared in Figure
5 (for an explanation of the shape of this transfer function in relation to flame and flow properties,
see [5]). All transfer functions presented in this paper are made dimensionless by scaling them
with their mean counterparts.

Figure 5 shows that when the time step is decreased, the results obtained from impulse excitation
in CFX are increasingly approximating the linear coefficient result. This confirms the statement that
transfer functions obtained with the linear coefficient method do not suffer from time truncation
errors. The transfer functions still look very simple, which is due to the fact that only the convection
and diffusion of the species are considered here. Adding more equations will influence the flame
transfer functions.

When the enthalpy equation is added to the considered set of equations, the transfer functions
shown in Figure 6 are obtained.

The enthalpy equation largely influences the results. This is because it directly influences the
temperature, which in turn has a large influence on the reaction rate. While the cut-off frequency
remains more of less the same as with the 4 convection–diffusion equations, additional bumps
appear on the spectrum. It is also seen that at some frequencies, the error made with the transient
CFD method is large, even with the smallest considered time step.

Finally, the transfer function of the entire model is compared with the transient results in Figure 7.
Some influence of the hydrodynamical equations can be noted when comparing Figure 7 with

the previously obtained transfer functions. However, the influence is not large. By considering only

Figure 5. Comparison between transfer functions obtained from impulse excitation in
CFX and from the linear coefficient method. Only the 4 convection–diffusion equations
for the mass fractions are included. —, linear coefficient method; , transient CFD

�t = 5e − 4 s; , transient CFD �t = 2.5e − 4 s.
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Figure 6. Comparison between transfer functions obtained from impulse excitation in CFX and
from the linear coefficient method. The 4 convection–diffusion equations for the mass fractions
and the enthalpy equation are included. —, linear coefficient method; , transient CFD

�t = 5e − 4 s; , transient CFD �t = 2.5e − 4 s.

Figure 7. Comparison between transfer functions obtained from impulse excitation in CFX and from the
linear coefficient method. All equations are included. —, linear coefficient method; , transient CFD

�t = 5e − 4 s; , transient CFD �T = 2.5e − 4 s.

the enthalpy and the 4 convection–diffusion equations, already a very good description of the flame
transfer function for this case is obtained.

Additionally, an axi-symmetric formulation of the linear coefficient method was compared here
with the three-dimensional formulation on basis of the geometry with the 10◦ cut. The axi-symmetric
formulation only requires the inclusion of the nodes at one periodic boundary. The total order of the
state-space model for the 11 equations is now further reduced to 15 257 (1387 nodes considered).
Figure 8 shows a comparison between the results obtained with a two-dimensional implementation
and the transient CFD results.
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Figure 8. Comparison between transfer functions obtained from impulse excitation in CFX and from the
two-dimensional version of the linear coefficient method. All equations are included. —, linear coefficient

method; , transient CFD �t = 5e−4 s; , transient CFD �t = 2.5e−4 s.

Table II. CPU times of state space and transient calculations (all preceded by retrieving
a steady-state solution).

CPU time (s)

Element 4 equations 5 equations 11 equations

Impulse excitation CFX �t = 0.25 ms 9.5× 103 1.5× 104 3.0× 104

Reducing to order 25 with restarted
and shifted Lanczos method 4.4× 101 9.5× 101 3.9× 103

Calculated transfer function from reduced model 6 6 6

While the peaks occur at the same locations as the CFD results, the level is off. It appears
to be very important that the steady-state solution obtained with CFX is mapped onto the same
mesh in the linear coefficient method. Mapping the solution on a two-dimensional mesh results in
slightly different residuals that cause the solution not to satisfy the steady-state condition anymore.
Applying the linear coefficient method might then give a wrong solution.

In Table II, the CPU times are listed for each method. For relatively small size problems, the
computational effort of the linear coefficient method is shown to be about a factor 102 less compared
to impulse excitation (for this specific case). When the problems become larger, i.e. adding more
equations or more nodes, this reduction in computational effort decreases slowly. The reason for
this is that solving the large linear systems that occur in the shifted version of the Lanczos method,
requires increasingly more calculation time.

When performing a transient simulation in CFX, each time step a similar sized linear problem
is solved. The performance of the solver is greatly improved by employing multigrid techniques,
i.e. incorporating information about the location of the nodes in the solving procedure. When
employing similar solution techniques in the linear coefficient method, it should be possible to
equal the time needed to reduce the system in size to 2k time steps (2k linear systems are solved,
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see Section 3.3) in CFX, where k is the size of the reduced system. So when the problem is reduced
to order 50, 100 linear systems are solved. When the iterative multigrid solver of CFX is used, this
can in principle be done in the same amount of CPU time in which 100 time steps are done.

5. CONCLUSIONS

With the linear coefficient method, flame transfer functions are calculated using a linearization of
the unsteady CFD equations around a steady-state solution. This is shown to be faster and more
accurate than when using conventional transient methods and spectral analysis. Therefore, the
method can be used as a design tool in determining the thermo-acoustic behaviour of combustion
systems. Note that the applications of the method are not restricted to flame transfer function
calculations. Any harmonic numerical experiment can be replaced by the linear coefficient method.

The test problems that have been studied with the linear coefficient method range up as high as
order 45 000. For higher-order models, the currently used solution process necessary for solving
the linear systems in the shifted Lanczos method becomes less efficient. To remove the limit in
size, a multigrid solver should be used to solve the linear systems in the shifted Lanczos method.
When the iterative multigrid solver of CFX would be used, the reduction of the linear description
to order k can in principle be done in the same amount of CPU time in which 2k time steps are
done.

APPENDIX A: THE GENERAL UNSYMMETRICAL LANCZOS METHOD

The explanation of the general unsymmetrical Lanczos method starts with the concept of Krylov
spaces [11]. A Krylov matrix K is a matrix of the form

K(A, x, n) = [x,Ax,A2x, . . . ,An−1x] (A1)

while the Krylov space is the space spanned by the columns of the Krylov matrix. Moreover, the
Rayleigh quotient r(x) is defined as

r(x) = xTAx
xTx

, x 	= 0 (A2)

A property of the Rayleigh quotient is that its maximum and minimum values represent the max-
imum and minimum eigenvalue of A, respectively [11]. These eigenvalues will be indicated as
	1(A) and 	n(A), respectively, in which n is the dimension of the square matrix A.

Now assume that qi ⊆�n is a sequence of orthonormal column vectors, and letQk =[q1, . . . , qk].
Using expression (A2) the largest eigenvalue Mk of the matrix QT

kAQk can be written as

Mk = 	1(QT
kAQk) = max

y 	=0

yT(QT
kAQk)y

yTy
= max

‖y‖2=1
r(Qky)�	1(A) (A3)

In the Lanczos algorithm the key issue is to choose Qk such that Mk is an increasingly better
estimate of 	1(A). When k<n, this will result in a k × k matrix Â=QT

kAQk, approximating the
largest eigenvalues of the n × n matrix A.
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When qk+1 is chosen such that

span{q1, . . . ,qk+1} = span{q1,Aq1, . . . ,Ak−1q1,Akq1} (A4)

it is ensured that the new approximation of the largest eigenvalue is better than the previous
one [11]. This is because the added vector qk+1 is then chosen such that the vector space span of
Qk+1 contains the direction in which the gradient of the Rayleigh quotient increases most rapidly,
since

∇r(x) = 2

xTx
(Ax − r(x)x)∈ span{x,Ax} (A5)

This means that when the space spanned by projector matrix Qk is taken equal to the Krylov
space of K(A,q1, k), the eigenvalues of the reduced k × k matrix QT

kAQk will be progressively
better approximation of the original matrix’ eigenvalues. The Lanczos method is used to efficiently
compute the orthonormal basis for this Krylov subspace.

The projected matrix Â=QT
kAQk is assumed to be tridiagonal, i.e. a square matrix with non-

zero coefficients only on the diagonal and horizontally or vertically adjacent the diagonal. This
allows an inexpensive calculation of the eigenvalues of Â once the orthonormal matrix Qk is
found. The elements of the tridiagonal matrix Â can be computed in a direct way by setting
Qk =[q1, . . . ,qk] = [q1,Aq1, . . . ,Akq1] and:

Â=QT
kAQk =Q−1

k AQk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 �1 0 0 0


1 �2 . 0 0

0 . . . 0

0 0 . . �k−1

0 0 0 
k−1 �k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)

For clarity, the inverse transpose of the Qk matrix is denoted as Pk, i.e. Q
−T
k ≡Pk. The Qk and Pk

matrices consist of k vectors:

Qk = [q1, . . . ,qk] (A7)

Pk = [p1, . . . ,pk] (A8)

When comparing columns in AQk =QkÂ and ATPk =PkÂT it is found that

Aqi = �i−1qi−1 + �iqi + 
iqi+1, �0q0 ≡ 0 (A9)

ATpi = 
i−1pi−1 + �ipi + �ipi+1, 
0p0 ≡ 0 (A10)

for i = 1, . . . , k − 1. The biorthonormality condition PT
kQk =Q−1

k Qk = Ik implies �i =pTi Aqi and


iqi+1 ≡ ri = (A − �i I)qi − �i−1qi−1 (A11)

�ipi+1 ≡ si = (A − �i I)Tpi − 
i−1pi−1 (A12)

Note that 1= pTi+1qi+1 = (si/�i )
T(ri/
i ) so that �i = sTi ri/
i . In the variant of the Lanczos method

that is used here, 
i is set to
√

|sTi ri|, so that �i = sign(sTi ri)
i .
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The algorithm for obtaining the biorthogonormal matrices Qk and Pk is given.

Algorithm 1 General unsymmetrical Lanczos method.


1 = √|CB|
�1 = sign(CB)
1
q1 =B/
1
p1 =CT /�1
q0 = 0
p0 = 0
for i = 1 to k do

�i = piTAqi
ri = (A − �i I)qi − �iqi−1
si = (A − �i I)Tpi − 
ipi−1


i+1 =√|siT ri|
�i+1 = sign(siT ri)
i+1
qi+1 = ri/
i+1
pi+1 = si/�i+1

end for

Using this algorithm, the matricesQk, Pk (=Q−T
k ) and Â can be calculated iteratively. The extremal

eigenvalues of Â turn out to be very good approximations of the extremal eigenvalues of A. It can
be seen that the start the starting vectors q1 and p1 of the Lanczos procedure are given by

q1 =B/
√|CB| (A13)

p1 = sign(CB)CT/
√|CB| (A14)

This appears to give good results for model reduction problems [10].
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